EXAMPLES: 123458 * 5 = ?
Solution : 123458*5 = (123458/2) * 10 = 61729*10 =
617290
617290
Example: 224569*5 = ?
Solution: 224569*5 = (224569/2) * 10 = 112284.5 * 10 =
1122845
1122845
Hence the pattern becomes:
X
* 5 = (X/2) * 10
* 5 = (X/2) * 10
Multiplication with 15:
Example: 124*15 =?
Solution: 124*15 = (124 + (124/2)) * 10
= (124 + 62) * 10 = 1860
Hence the pattern becomes:
X*15
= (X + X/2) * 10 è X*15 = (3X/2) * 10
= (X + X/2) * 10 è X*15 = (3X/2) * 10
Multiplication with 25:
Example: 2264 * 25 =?
Solution: 2264*25 = (2264/4) * 100 = 566 * 100 = 56600
Hence the pattern is:
X*25
= (X/4)*100
= (X/4)*100
Multiplication with 35:
Example: 127*35 =?
Solution: 127*35 = (3*127 + (127/2)) * 10
= (381 + 63.5) * 10 = 4445
Hence the pattern is:
X*35
= (3*X + X/2) * 10 è X*35 = (7X/2) * 10
= (3*X + X/2) * 10 è X*35 = (7X/2) * 10
Note : The above shown patterns will continue for all the
numbers ending with 5. In general we can write this as:
numbers ending with 5. In general we can write this as:
X*n5
= (n*X + X/2) * 10
= (n*X + X/2) * 10
Where, n = 0,1,2,3, ………………………………
Some more examples :
- 136
* 65 = (6*136 + 136/2) * 10 = (816+68)*10 = 8840 - 132*105
= (10*132 + 132/2) * 10 = (1320 + 66)*10 = 13860 - 123*55
= (5*123 + 123/2)*10 = (615+61.5)*10 = 6765
Multiplication of Numbers Ending with 5 and having the difference of 10 :
Let us assume that there are two numbers X5 and Y5, and the difference between the two numbers is 10.
(Larger number of X and Y)2 – 1 | 75
Note : X and Y may be single digit or 2-digit or 3-digit numbers!
EXAMPLES:
1) 35*45 =?
Sol: 35*45 = (42 – 1) |75 = 1575
2) 75*85 = ?
Sol: 75*85 = (82 – 1)|75 = 6375
3) 105*115 = ?
Sol: 105*115 = (112 – 1)|75 = 12075
4) 235*245 = ?
Sol: 235*245 = (242 – 1)|75 = 57575
5) 255*245 = ?
Sol: 255*245 = (252 – 1)|75 = 62475
6) 1055*1045 = ?
Sol: 1055*1045 = (1052 – 1)|75 = 1102475
7) 1125*1135 = ?
Sol: 1125*1135 = (1132– 1)|75 = 1276875
0 comments
Readers Comments